(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
foldl#3(x2, Nil) → x2
foldl#3(x16, Cons(x24, x6)) → foldl#3(Cons(x24, x16), x6)
main(x1) → foldl#3(Nil, x1)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
foldl#3(x2, Nil) → x2
foldl#3(x16, Cons(x24, x6)) → foldl#3(Cons(x24, x16), x6)
main(x1) → foldl#3(Nil, x1)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
foldl#3(x2, Nil) → x2
foldl#3(x16, Cons(x6)) → foldl#3(Cons(x16), x6)
main(x1) → foldl#3(Nil, x1)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
foldl#3(x2, Nil) → x2
foldl#3(x16, Cons(x6)) → foldl#3(Cons(x16), x6)
main(x1) → foldl#3(Nil, x1)
Types:
foldl#3 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: Nil:Cons → Nil:Cons
main :: Nil:Cons → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
gen_Nil:Cons2_0 :: Nat → Nil:Cons
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
foldl#3
(8) Obligation:
Innermost TRS:
Rules:
foldl#3(
x2,
Nil) →
x2foldl#3(
x16,
Cons(
x6)) →
foldl#3(
Cons(
x16),
x6)
main(
x1) →
foldl#3(
Nil,
x1)
Types:
foldl#3 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: Nil:Cons → Nil:Cons
main :: Nil:Cons → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
gen_Nil:Cons2_0 :: Nat → Nil:Cons
Generator Equations:
gen_Nil:Cons2_0(0) ⇔ Nil
gen_Nil:Cons2_0(+(x, 1)) ⇔ Cons(gen_Nil:Cons2_0(x))
The following defined symbols remain to be analysed:
foldl#3
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldl#3(
gen_Nil:Cons2_0(
a),
gen_Nil:Cons2_0(
n4_0)) →
gen_Nil:Cons2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
foldl#3(gen_Nil:Cons2_0(a), gen_Nil:Cons2_0(0)) →RΩ(1)
gen_Nil:Cons2_0(a)
Induction Step:
foldl#3(gen_Nil:Cons2_0(a), gen_Nil:Cons2_0(+(n4_0, 1))) →RΩ(1)
foldl#3(Cons(gen_Nil:Cons2_0(a)), gen_Nil:Cons2_0(n4_0)) →IH
gen_Nil:Cons2_0(+(+(a, 1), c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
foldl#3(
x2,
Nil) →
x2foldl#3(
x16,
Cons(
x6)) →
foldl#3(
Cons(
x16),
x6)
main(
x1) →
foldl#3(
Nil,
x1)
Types:
foldl#3 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: Nil:Cons → Nil:Cons
main :: Nil:Cons → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
gen_Nil:Cons2_0 :: Nat → Nil:Cons
Lemmas:
foldl#3(gen_Nil:Cons2_0(a), gen_Nil:Cons2_0(n4_0)) → gen_Nil:Cons2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Nil:Cons2_0(0) ⇔ Nil
gen_Nil:Cons2_0(+(x, 1)) ⇔ Cons(gen_Nil:Cons2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldl#3(gen_Nil:Cons2_0(a), gen_Nil:Cons2_0(n4_0)) → gen_Nil:Cons2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
foldl#3(
x2,
Nil) →
x2foldl#3(
x16,
Cons(
x6)) →
foldl#3(
Cons(
x16),
x6)
main(
x1) →
foldl#3(
Nil,
x1)
Types:
foldl#3 :: Nil:Cons → Nil:Cons → Nil:Cons
Nil :: Nil:Cons
Cons :: Nil:Cons → Nil:Cons
main :: Nil:Cons → Nil:Cons
hole_Nil:Cons1_0 :: Nil:Cons
gen_Nil:Cons2_0 :: Nat → Nil:Cons
Lemmas:
foldl#3(gen_Nil:Cons2_0(a), gen_Nil:Cons2_0(n4_0)) → gen_Nil:Cons2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Nil:Cons2_0(0) ⇔ Nil
gen_Nil:Cons2_0(+(x, 1)) ⇔ Cons(gen_Nil:Cons2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldl#3(gen_Nil:Cons2_0(a), gen_Nil:Cons2_0(n4_0)) → gen_Nil:Cons2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)